A New Cluster Validity Criterion for Fuzzy C-Regression Models Clustering and Its Application to Fuzzy Model Identification
نویسندگان
چکیده
In this paper, a new cluster validity criterion for fuzzy c-regression models (FCRM) clustering algorithm with affine linear functional cluster representatives is proposed. The proposed cluster validity criterion calculates the overall compactness and separateness of the FCRM partition and then determines the appropriate number of clusters. Besides, its application to fuzzy model identification is discussed. A TS fuzzy model identification algorithm is proposed to extract compact number of IF-THEN rules from data. Two simulation examples are provided to demonstrate the potential of the proposed cluster validity criterion and the accuracy of the constructed T-S fuzzy model.
منابع مشابه
A new method for fuzzification of nested dummy variables by fuzzy clustering membership functions and its application in financial economy
In this study, the aim is to propose a new method for fuzzification of nested dummy variables. The fuzzification idea of dummy variables has been acquired from non-linear part of regime switching models in econometrics. In these models, the concept of transfer functions is like the notion of fuzzy membership functions, but no principle or linguistic sentence have been used for inputs. Consequen...
متن کاملA Fuzzy C-means Algorithm for Clustering Fuzzy Data and Its Application in Clustering Incomplete Data
The fuzzy c-means clustering algorithm is a useful tool for clustering; but it is convenient only for crisp complete data. In this article, an enhancement of the algorithm is proposed which is suitable for clustering trapezoidal fuzzy data. A linear ranking function is used to define a distance for trapezoidal fuzzy data. Then, as an application, a method based on the proposed algorithm is pres...
متن کاملA Multi-Objective Approach to Fuzzy Clustering using ITLBO Algorithm
Data clustering is one of the most important areas of research in data mining and knowledge discovery. Recent research in this area has shown that the best clustering results can be achieved using multi-objective methods. In other words, assuming more than one criterion as objective functions for clustering data can measurably increase the quality of clustering. In this study, a model with two ...
متن کاملA new quadratic deviation of fuzzy random variable and its application to portfolio optimization
The aim of this paper is to propose a convex risk measure in the framework of fuzzy random theory and verify its advantage over the conventional variance approach. For this purpose, this paper defines the quadratic deviation (QD) of fuzzy random variable as the mathematical expectation of QDs of fuzzy variables. As a result, the new risk criterion essentially describes the variation of a fuzzy ...
متن کاملHinging hyperplane based regression tree identified by fuzzy clustering and its application
Hierarchical fuzzy modeling techniques have great advantage since model accuracy and complexity can be easily controlled thanks to the transparent model structures. A novel tool for regression tree identification is proposed based on the synergistic combination of fuzzy c-regression clustering and the concept of hierarchical modeling. In a special case (c = 2), fuzzy c-regression clustering can...
متن کامل